Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ji-Kun Li,* Ru-Fen Zhang and Chun-Lin Ma

Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China

Correspondence e-mail: macl@lctu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.032$
$w R$ factor $=0.097$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4,5-Diphenyl-2-(trimethylstannylsulfanyl)-1,3-oxazole

The mononuclear title complex, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{NOS}\right)\right]$, features a distorted $\mathrm{C}_{3} \mathrm{~S}$ tetrahedral geometry for Sn with some of the distortion ascribed to an intramolecular $\mathrm{Sn} \cdots \mathrm{N}$ interaction. Intermolecular $\mathrm{Sn} \cdots \mathrm{S}$ interactions lead to the formation of a helical chain.

Comment

In recent years, organotin complexes have attracted increasing attention owing to their wide industrial applications and biological activities (Duboy \& Roy, 2003). In order to explore the relationships between these applications and their structures, a large number of organotin compounds have been prepared and studied (Gielen, 2002). In this connection, we report the structure of the title compound, (I). As shown in Fig. 1, the Sn atom in (I) is four-coordinated so that the $\mathrm{C}_{3} \mathrm{~S}$ donor set defines a distorted tetrahedral geometry. Some of the distortion is ascribed to an intramolecular $\mathrm{Sn} \cdots \mathrm{N} 1$ interaction of 3.147 (3) \AA. If this interaction was considered significant, the geometry would be best considered as distorted trigonal bipyramidal, the axial $\mathrm{N} 1-\mathrm{Sn} 1-\mathrm{C} 18$ angle being $157.06(13)^{\circ}$. The $\mathrm{Sn}-\mathrm{C}$ and $\mathrm{Sn}-\mathrm{S}$ bond lengths (Table 1) are in good agreement with those found in (1-phenyl-1H-tetra-zole-5-thiolato)trimethyltin (Cea-Olivares et al., 1994); the $\mathrm{Sn} \cdots \mathrm{N}$ interaction in this structure, of $3.285(12) \AA$, is also comparable to that found in (I). There is an intermolecular $\mathrm{Sn} \cdots \mathrm{S}^{\mathrm{i}}$ contact of 3.6857 (12) A, such that molecules are associated into a helical chain along the b axis, as shown in Fig. 2 [symmetry code: (i) $\left.\frac{3}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z\right]$.

(I)

Experimental

All reagents and solvents were used as obtained and the reaction was carried out under a nitrogen atmosphere. 4,5-Diphenyl-4-oxazoline-2-thione ($0.253 \mathrm{~g}, 1 \mathrm{mmol}$) was added to sodium ethoxide $(0.068 \mathrm{~g}$, 1 mmol) in benzene (20 ml). After stirring for 10 min , trimethyltin chloride ($0.199 \mathrm{~g}, 1 \mathrm{mmol}$) was added and the reaction was continued

Received 24 October 2005 Accepted 27 October 2005 Online 31 October 2005

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity. The dashed line indicates the intramolecular $\mathrm{Sn} \cdots \mathrm{N} 1$ interaction.
for 12 h at 313 K . After cooling to room temperature, the solution was filtered. The filtrate was gradually removed by evaporation under vacuum until a solid product was obtained. This solid was recrystallized from dichloromethane and colorless crystals suitable for X-ray diffraction were obtained. Yield $0.384 \mathrm{~g}, 85 \%$. M.p. 424 K . Analysis found: C $51.93, \mathrm{H} 4.61, \mathrm{~N} 3.36 \% ; \mathrm{C}_{18} \mathrm{H}_{19}$ NOSSn requires: C 51.96, H 4.60, N 3.37%.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{NOS}\right)\right]$
$M_{r}=416.09$
Monoclinic, $P 2_{1} / n$
$a=9.267$ (3) \AA
$b=9.824$ (3) \AA
$c=20.477$ (6) \AA
$\beta=102.144$ (4) ${ }^{\circ}$
$V=1822.5$ (9) \AA^{3}
$Z=4$

Data collection

Siemens SMART CCD area detector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.498, T_{\text {max }}=0.588$
9231 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.097$
$S=1.01$
3201 reflections
199 parameters
H-atom parameters constrained
$D_{x}=1.516 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5503 reflections
$\theta=2.3-27.9^{\circ}$
$\mu=1.52 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.49 \times 0.42 \times 0.35 \mathrm{~mm}$

3201 independent reflections
2687 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 8$
$k=-11 \rightarrow 10$
$l=-12 \rightarrow 24$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0669 P)^{2}\right. \\
+0.3413 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.95 \mathrm{e}^{-3}
\end{gathered}
$$

Figure 2
A supramolecular one-dimensional chain in (I), mediated by $\mathrm{Sn} \cdots \mathrm{S}$ interactions. H atoms have been omitted.

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Sn1-S1	$2.4932(11)$	$\mathrm{Sn} 1-\mathrm{C} 17$	$2.124(4)$
$\mathrm{Sn} 1-\mathrm{N} 1$	$3.147(3)$	$\mathrm{Sn} 1-\mathrm{C} 18$	$2.129(4)$
$\mathrm{Sn} 1-\mathrm{C} 16$	$2.120(4)$	$\mathrm{Sn} 1-\mathrm{S} 1^{\mathrm{i}}$	$3.6857(12)$
S1-Sn1-N1	$56.53(5)$	$\mathrm{N} 1-\mathrm{Sn} 1-\mathrm{C} 18$	$157.06(13)$
$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{C} 16$	$102.38(12)$	$\mathrm{C} 16-\mathrm{Sn} 1-\mathrm{C} 17$	$118.54(17)$
$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{C} 17$	$104.54(13)$	$\mathrm{C} 16-\mathrm{Sn} 1-\mathrm{C} 18$	$115.46(17)$
$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{C} 18$	$100.53(13)$	$\mathrm{C} 17-\mathrm{Sn} 1-\mathrm{C} 18$	$112.30(18)$
N1-Sn1-C16	$73.56(13)$	$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{S} 1^{\mathrm{i}}$	$168.995(18)$
N1-Sn1-C17	$77.35(14)$		
Symmetry code: $(\mathrm{i})-x+^{3} y-12$			

Symmetry code: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.
The H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}($ aromatic $)=0.93 \AA$ and $\mathrm{C}-\mathrm{H}($ methyl $)=0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}$ aromatic $)$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}$ methyl $)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (20271025) and the Natural Science Foundation of Shandong Province for financial support.

References

Cea-Olivares, R., Jimenez-Sandoval, O., Espinosa-Perez, G. \& Silvestru, C. (1994). J. Organomet. Chem. 484, 33-36.

Duboy, S. K. \& Roy, U. (2003). Appl. Organomet. Chem. 17, 3-8.
Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

